MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. ASTM A372 Grade L Steel

C61800 bronze belongs to the copper alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
14
Fatigue Strength, MPa 190
670
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310
700
Tensile Strength: Ultimate (UTS), MPa 740
1160
Tensile Strength: Yield (Proof), MPa 310
1040

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 64
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.7
Embodied Energy, MJ/kg 52
22
Embodied Water, L/kg 390
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
150
Resilience: Unit (Modulus of Resilience), kJ/m3 420
2890
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 25
41
Strength to Weight: Bending, points 22
31
Thermal Diffusivity, mm2/s 18
12
Thermal Shock Resistance, points 26
34

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
95.2 to 96.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0