MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. ASTM A387 Grade 22 Steel

C61800 bronze belongs to the copper alloys classification, while ASTM A387 grade 22 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is ASTM A387 grade 22 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
21
Fatigue Strength, MPa 190
160 to 240
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Shear Strength, MPa 310
300 to 380
Tensile Strength: Ultimate (UTS), MPa 740
480 to 600
Tensile Strength: Yield (Proof), MPa 310
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Maximum Temperature: Mechanical, °C 220
460
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 64
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.8
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.1
1.7
Embodied Energy, MJ/kg 52
23
Embodied Water, L/kg 390
58

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
85 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
140 to 320
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 25
17 to 21
Strength to Weight: Bending, points 22
17 to 20
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 26
14 to 17

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
95.1 to 96.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0