MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. EN 1.7383 Steel

C61800 bronze belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
20 to 23
Fatigue Strength, MPa 190
210 to 270
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
74
Shear Strength, MPa 310
350 to 380
Tensile Strength: Ultimate (UTS), MPa 740
560 to 610
Tensile Strength: Yield (Proof), MPa 310
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Maximum Temperature: Mechanical, °C 220
460
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 64
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
3.9
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.1
1.8
Embodied Energy, MJ/kg 52
23
Embodied Water, L/kg 390
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
240 to 420
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 25
20 to 22
Strength to Weight: Bending, points 22
19 to 20
Thermal Diffusivity, mm2/s 18
11
Thermal Shock Resistance, points 26
16 to 18

Alloy Composition

Aluminum (Al), % 8.5 to 11
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 86.9 to 91
0 to 0.3
Iron (Fe), % 0.5 to 1.5
94.3 to 96.6
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0