MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. EN AC-44000 Aluminum

C61800 bronze belongs to the copper alloys classification, while EN AC-44000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61800 bronze and the bottom bar is EN AC-44000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 26
7.3
Fatigue Strength, MPa 190
64
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
27
Tensile Strength: Ultimate (UTS), MPa 740
180
Tensile Strength: Yield (Proof), MPa 310
86

Thermal Properties

Latent Heat of Fusion, J/g 230
560
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
590
Melting Onset (Solidus), °C 1040
590
Specific Heat Capacity, J/kg-K 440
910
Thermal Conductivity, W/m-K 64
140
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
36
Electrical Conductivity: Equal Weight (Specific), % IACS 14
130

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.3
2.5
Embodied Carbon, kg CO2/kg material 3.1
7.8
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 390
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
11
Resilience: Unit (Modulus of Resilience), kJ/m3 420
51
Stiffness to Weight: Axial, points 7.5
16
Stiffness to Weight: Bending, points 19
55
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
28
Thermal Diffusivity, mm2/s 18
61
Thermal Shock Resistance, points 26
8.4

Alloy Composition

Aluminum (Al), % 8.5 to 11
87.1 to 90
Copper (Cu), % 86.9 to 91
0 to 0.050
Iron (Fe), % 0.5 to 1.5
0 to 0.19
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0 to 0.45
Manganese (Mn), % 0
0 to 0.1
Silicon (Si), % 0 to 0.1
10 to 11.8
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.020
0 to 0.070
Residuals, % 0
0 to 0.1