MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. SAE-AISI 1035 Steel

C61800 bronze belongs to the copper alloys classification, while SAE-AISI 1035 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is SAE-AISI 1035 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
13 to 21
Fatigue Strength, MPa 190
210 to 340
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310
360 to 370
Tensile Strength: Ultimate (UTS), MPa 740
570 to 620
Tensile Strength: Yield (Proof), MPa 310
300 to 530

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 220
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 64
51
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
1.8
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.4
Embodied Energy, MJ/kg 52
18
Embodied Water, L/kg 390
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 420
250 to 740
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 25
20 to 22
Strength to Weight: Bending, points 22
19 to 21
Thermal Diffusivity, mm2/s 18
14
Thermal Shock Resistance, points 26
18 to 20

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0.32 to 0.38
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
98.6 to 99.08
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.6 to 0.9
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0