MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. C72700 Copper-nickel

Both C61800 bronze and C72700 copper-nickel are copper alloys. They have 84% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is C72700 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 26
4.0 to 36
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
44
Shear Strength, MPa 310
310 to 620
Tensile Strength: Ultimate (UTS), MPa 740
460 to 1070
Tensile Strength: Yield (Proof), MPa 310
580 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1050
1100
Melting Onset (Solidus), °C 1040
930
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 64
54
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
11
Electrical Conductivity: Equal Weight (Specific), % IACS 14
11

Otherwise Unclassified Properties

Base Metal Price, % relative 28
36
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.1
4.0
Embodied Energy, MJ/kg 52
62
Embodied Water, L/kg 390
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
20 to 380
Resilience: Unit (Modulus of Resilience), kJ/m3 420
1420 to 4770
Stiffness to Weight: Axial, points 7.5
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 25
14 to 34
Strength to Weight: Bending, points 22
15 to 26
Thermal Diffusivity, mm2/s 18
16
Thermal Shock Resistance, points 26
16 to 38

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Copper (Cu), % 86.9 to 91
82.1 to 86
Iron (Fe), % 0.5 to 1.5
0 to 0.5
Lead (Pb), % 0 to 0.020
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
8.5 to 9.5
Niobium (Nb), % 0
0 to 0.1
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0 to 0.020
0 to 0.5
Residuals, % 0
0 to 0.3