MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. C87800 Brass

Both C61800 bronze and C87800 brass are copper alloys. They have 83% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 26
25
Poisson's Ratio 0.34
0.33
Rockwell B Hardness 89
86
Shear Modulus, GPa 44
42
Tensile Strength: Ultimate (UTS), MPa 740
590
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
260
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
920
Melting Onset (Solidus), °C 1040
820
Specific Heat Capacity, J/kg-K 440
410
Thermal Conductivity, W/m-K 64
28
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 14
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
27
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 52
44
Embodied Water, L/kg 390
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
130
Resilience: Unit (Modulus of Resilience), kJ/m3 420
540
Stiffness to Weight: Axial, points 7.5
7.4
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 18
8.3
Thermal Shock Resistance, points 26
21

Alloy Composition

Aluminum (Al), % 8.5 to 11
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Copper (Cu), % 86.9 to 91
80 to 84.2
Iron (Fe), % 0.5 to 1.5
0 to 0.15
Lead (Pb), % 0 to 0.020
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0
0 to 0.15
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.1
3.8 to 4.2
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.020
12 to 16
Residuals, % 0
0 to 0.5