MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. N07752 Nickel

C61800 bronze belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
22
Fatigue Strength, MPa 190
450
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 310
710
Tensile Strength: Ultimate (UTS), MPa 740
1120
Tensile Strength: Yield (Proof), MPa 310
740

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 1050
1380
Melting Onset (Solidus), °C 1040
1330
Specific Heat Capacity, J/kg-K 440
460
Thermal Conductivity, W/m-K 64
13
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
60
Density, g/cm3 8.3
8.4
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 390
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
220
Resilience: Unit (Modulus of Resilience), kJ/m3 420
1450
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 25
37
Strength to Weight: Bending, points 22
29
Thermal Diffusivity, mm2/s 18
3.2
Thermal Shock Resistance, points 26
34

Alloy Composition

Aluminum (Al), % 8.5 to 11
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 86.9 to 91
0 to 0.5
Iron (Fe), % 0.5 to 1.5
5.0 to 9.0
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.020
0 to 0.050
Residuals, % 0 to 0.5
0