MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. S40975 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while S40975 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is S40975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
22
Fatigue Strength, MPa 190
210
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 89
81
Shear Modulus, GPa 44
75
Shear Strength, MPa 310
290
Tensile Strength: Ultimate (UTS), MPa 740
460
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 220
710
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
26
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
6.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.0
Embodied Energy, MJ/kg 52
28
Embodied Water, L/kg 390
95

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
93
Resilience: Unit (Modulus of Resilience), kJ/m3 420
250
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 18
7.0
Thermal Shock Resistance, points 26
17

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
84.4 to 89
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0.5 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.75
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0