MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. S43940 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while S43940 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 26
21
Fatigue Strength, MPa 190
180
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 89
76
Shear Modulus, GPa 44
77
Shear Strength, MPa 310
310
Tensile Strength: Ultimate (UTS), MPa 740
490
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
890
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
25
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
12
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 52
38
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
86
Resilience: Unit (Modulus of Resilience), kJ/m3 420
200
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
18
Strength to Weight: Bending, points 22
18
Thermal Diffusivity, mm2/s 18
6.8
Thermal Shock Resistance, points 26
18

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 18.5
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
78.2 to 82.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.1 to 0.6
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0