MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. S44625 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while S44625 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is S44625 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 26
22
Fatigue Strength, MPa 190
240
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Shear Strength, MPa 310
370
Tensile Strength: Ultimate (UTS), MPa 740
590
Tensile Strength: Yield (Proof), MPa 310
360

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
17
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
14
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.8
Embodied Energy, MJ/kg 52
39
Embodied Water, L/kg 390
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
310
Stiffness to Weight: Axial, points 7.5
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 18
4.6
Thermal Shock Resistance, points 26
19

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 86.9 to 91
0 to 0.2
Iron (Fe), % 0.5 to 1.5
69.4 to 74.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0