MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. AWS E410

C61900 bronze belongs to the copper alloys classification, while AWS E410 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21 to 32
23
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
76
Tensile Strength: Ultimate (UTS), MPa 570 to 650
580
Tensile Strength: Yield (Proof), MPa 230 to 310
440

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 79
28
Thermal Expansion, µm/m-K 18
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 11
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.0
Embodied Energy, MJ/kg 51
28
Embodied Water, L/kg 380
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
120
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
500
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 22
21
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 22
7.5
Thermal Shock Resistance, points 20 to 23
16

Alloy Composition

Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
11 to 13.5
Copper (Cu), % 83.6 to 88.5
0 to 0.75
Iron (Fe), % 3.0 to 4.5
82.2 to 89
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0