MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. EN 1.4361 Stainless Steel

C61900 bronze belongs to the copper alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 21 to 32
43
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
75
Shear Strength, MPa 370 to 410
440
Tensile Strength: Ultimate (UTS), MPa 570 to 650
630
Tensile Strength: Yield (Proof), MPa 230 to 310
250

Thermal Properties

Latent Heat of Fusion, J/g 230
350
Maximum Temperature: Mechanical, °C 220
940
Melting Completion (Liquidus), °C 1050
1370
Melting Onset (Solidus), °C 1040
1330
Specific Heat Capacity, J/kg-K 440
490
Thermal Conductivity, W/m-K 79
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
19
Density, g/cm3 8.3
7.6
Embodied Carbon, kg CO2/kg material 3.1
3.6
Embodied Energy, MJ/kg 51
52
Embodied Water, L/kg 380
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
220
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
160
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 22
23
Strength to Weight: Bending, points 18 to 20
21
Thermal Diffusivity, mm2/s 22
3.7
Thermal Shock Resistance, points 20 to 23
15

Alloy Composition

Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 83.6 to 88.5
0
Iron (Fe), % 3.0 to 4.5
58.7 to 65.8
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0