MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. C65100 Bronze

Both C61900 bronze and C65100 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 21 to 32
2.4 to 50
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Shear Strength, MPa 370 to 410
200 to 350
Tensile Strength: Ultimate (UTS), MPa 570 to 650
280 to 560
Tensile Strength: Yield (Proof), MPa 230 to 310
95 to 440

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1050
1060
Melting Onset (Solidus), °C 1040
1030
Specific Heat Capacity, J/kg-K 440
390
Thermal Conductivity, W/m-K 79
57
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
12
Electrical Conductivity: Equal Weight (Specific), % IACS 11
12

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 3.1
2.6
Embodied Energy, MJ/kg 51
41
Embodied Water, L/kg 380
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
39 to 820
Stiffness to Weight: Axial, points 7.6
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 19 to 22
8.7 to 18
Strength to Weight: Bending, points 18 to 20
11 to 17
Thermal Diffusivity, mm2/s 22
16
Thermal Shock Resistance, points 20 to 23
9.5 to 19

Alloy Composition

Aluminum (Al), % 8.5 to 10
0
Copper (Cu), % 83.6 to 88.5
94.5 to 99.2
Iron (Fe), % 3.0 to 4.5
0 to 0.8
Lead (Pb), % 0 to 0.020
0 to 0.050
Manganese (Mn), % 0
0 to 0.7
Silicon (Si), % 0
0.8 to 2.0
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0 to 1.5
Residuals, % 0
0 to 0.5