MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. C84000 Brass

Both C61900 bronze and C84000 brass are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is C84000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 21 to 32
27
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Tensile Strength: Ultimate (UTS), MPa 570 to 650
250
Tensile Strength: Yield (Proof), MPa 230 to 310
140

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
1040
Melting Onset (Solidus), °C 1040
940
Specific Heat Capacity, J/kg-K 440
380
Thermal Conductivity, W/m-K 79
72
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
16
Electrical Conductivity: Equal Weight (Specific), % IACS 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 28
30
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 3.1
3.0
Embodied Energy, MJ/kg 51
49
Embodied Water, L/kg 380
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
58
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
83
Stiffness to Weight: Axial, points 7.6
7.2
Stiffness to Weight: Bending, points 19
19
Strength to Weight: Axial, points 19 to 22
8.2
Strength to Weight: Bending, points 18 to 20
10
Thermal Diffusivity, mm2/s 22
22
Thermal Shock Resistance, points 20 to 23
9.0

Alloy Composition

Aluminum (Al), % 8.5 to 10
0 to 0.0050
Antimony (Sb), % 0
0 to 0.020
Boron (B), % 0
0 to 0.1
Copper (Cu), % 83.6 to 88.5
82 to 89
Iron (Fe), % 3.0 to 4.5
0 to 0.4
Lead (Pb), % 0 to 0.020
0 to 0.090
Manganese (Mn), % 0
0 to 0.010
Nickel (Ni), % 0
0.5 to 2.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0.1 to 0.65
Tin (Sn), % 0 to 0.6
2.0 to 4.0
Zinc (Zn), % 0 to 0.8
5.0 to 14
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.7