MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. C92600 Bronze

Both C61900 bronze and C92600 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is C92600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 21 to 32
30
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 570 to 650
300
Tensile Strength: Yield (Proof), MPa 230 to 310
140

Thermal Properties

Latent Heat of Fusion, J/g 230
190
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1050
980
Melting Onset (Solidus), °C 1040
840
Specific Heat Capacity, J/kg-K 440
370
Thermal Conductivity, W/m-K 79
67
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 28
34
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.1
3.6
Embodied Energy, MJ/kg 51
58
Embodied Water, L/kg 380
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
74
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
88
Stiffness to Weight: Axial, points 7.6
6.8
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 19 to 22
9.6
Strength to Weight: Bending, points 18 to 20
11
Thermal Diffusivity, mm2/s 22
21
Thermal Shock Resistance, points 20 to 23
11

Alloy Composition

Aluminum (Al), % 8.5 to 10
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 83.6 to 88.5
86 to 88.5
Iron (Fe), % 3.0 to 4.5
0 to 0.2
Lead (Pb), % 0 to 0.020
0.8 to 1.5
Nickel (Ni), % 0
0 to 0.7
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.6
9.3 to 10.5
Zinc (Zn), % 0 to 0.8
1.3 to 2.5
Residuals, % 0
0 to 0.7