MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. N06650 Nickel

C61900 bronze belongs to the copper alloys classification, while N06650 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 21 to 32
50
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
82
Shear Strength, MPa 370 to 410
640
Tensile Strength: Ultimate (UTS), MPa 570 to 650
900
Tensile Strength: Yield (Proof), MPa 230 to 310
460

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1050
1500
Melting Onset (Solidus), °C 1040
1450
Specific Heat Capacity, J/kg-K 440
440
Thermal Expansion, µm/m-K 18
12

Otherwise Unclassified Properties

Base Metal Price, % relative 28
60
Density, g/cm3 8.3
8.6
Embodied Carbon, kg CO2/kg material 3.1
10
Embodied Energy, MJ/kg 51
140
Embodied Water, L/kg 380
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
380
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
490
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 19 to 22
29
Strength to Weight: Bending, points 18 to 20
24
Thermal Shock Resistance, points 20 to 23
24

Alloy Composition

Aluminum (Al), % 8.5 to 10
0.050 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 83.6 to 88.5
0 to 0.3
Iron (Fe), % 3.0 to 4.5
12 to 16
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.6
0
Tungsten (W), % 0
0.5 to 2.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0