MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. N08020 Stainless Steel

C61900 bronze belongs to the copper alloys classification, while N08020 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is N08020 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21 to 32
15 to 34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 370 to 410
380 to 410
Tensile Strength: Ultimate (UTS), MPa 570 to 650
610 to 620
Tensile Strength: Yield (Proof), MPa 230 to 310
270 to 420

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1410
Melting Onset (Solidus), °C 1040
1360
Specific Heat Capacity, J/kg-K 440
460
Thermal Conductivity, W/m-K 79
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
38
Density, g/cm3 8.3
8.2
Embodied Carbon, kg CO2/kg material 3.1
6.6
Embodied Energy, MJ/kg 51
92
Embodied Water, L/kg 380
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
83 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
180 to 440
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 22
21
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 22
3.2
Thermal Shock Resistance, points 20 to 23
15

Alloy Composition

Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 83.6 to 88.5
3.0 to 4.0
Iron (Fe), % 3.0 to 4.5
29.9 to 44
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 38
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0