MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. S13800 Stainless Steel

C61900 bronze belongs to the copper alloys classification, while S13800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is S13800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21 to 32
11 to 18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
77
Shear Strength, MPa 370 to 410
610 to 1030
Tensile Strength: Ultimate (UTS), MPa 570 to 650
980 to 1730
Tensile Strength: Yield (Proof), MPa 230 to 310
660 to 1580

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
810
Melting Completion (Liquidus), °C 1050
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 79
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
15
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 3.1
3.4
Embodied Energy, MJ/kg 51
46
Embodied Water, L/kg 380
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
1090 to 5490
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 22
35 to 61
Strength to Weight: Bending, points 18 to 20
28 to 41
Thermal Diffusivity, mm2/s 22
4.3
Thermal Shock Resistance, points 20 to 23
33 to 58

Alloy Composition

Aluminum (Al), % 8.5 to 10
0.9 to 1.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
12.3 to 13.2
Copper (Cu), % 83.6 to 88.5
0
Iron (Fe), % 3.0 to 4.5
73.6 to 77.3
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.2
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
7.5 to 8.5
Nitrogen (N), % 0
0 to 0.010
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.0080
Tin (Sn), % 0 to 0.6
0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0