MakeItFrom.com
Menu (ESC)

C61900 Bronze vs. S35135 Stainless Steel

C61900 bronze belongs to the copper alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C61900 bronze and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21 to 32
34
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Shear Strength, MPa 370 to 410
390
Tensile Strength: Ultimate (UTS), MPa 570 to 650
590
Tensile Strength: Yield (Proof), MPa 230 to 310
230

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
1100
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1380
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 28
37
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.1
6.8
Embodied Energy, MJ/kg 51
94
Embodied Water, L/kg 380
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 150
160
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 430
130
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 22
20
Strength to Weight: Bending, points 18 to 20
19
Thermal Shock Resistance, points 20 to 23
13

Alloy Composition

Aluminum (Al), % 8.5 to 10
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 83.6 to 88.5
0 to 0.75
Iron (Fe), % 3.0 to 4.5
28.3 to 45
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.6
0
Titanium (Ti), % 0
0.4 to 1.0
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0 to 0.5
0