MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. C95800 Bronze

Both C62300 bronze and C95800 bronze are copper alloys. They have a moderately high 94% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is C95800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 18 to 32
22
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
44
Tensile Strength: Ultimate (UTS), MPa 570 to 630
660
Tensile Strength: Yield (Proof), MPa 230 to 310
270

Thermal Properties

Latent Heat of Fusion, J/g 230
230
Maximum Temperature: Mechanical, °C 220
230
Melting Completion (Liquidus), °C 1050
1060
Melting Onset (Solidus), °C 1040
1040
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 54
36
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 28
29
Density, g/cm3 8.3
8.3
Embodied Carbon, kg CO2/kg material 3.1
3.4
Embodied Energy, MJ/kg 52
55
Embodied Water, L/kg 390
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
310
Stiffness to Weight: Axial, points 7.6
7.9
Stiffness to Weight: Bending, points 19
20
Strength to Weight: Axial, points 19 to 21
22
Strength to Weight: Bending, points 18 to 20
20
Thermal Diffusivity, mm2/s 15
9.9
Thermal Shock Resistance, points 20 to 22
23

Alloy Composition

Aluminum (Al), % 8.5 to 10
8.5 to 9.5
Copper (Cu), % 83.2 to 89.5
79 to 83.2
Iron (Fe), % 2.0 to 4.0
3.5 to 4.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 0.5
0.8 to 1.5
Nickel (Ni), % 0 to 1.0
4.0 to 5.0
Silicon (Si), % 0 to 0.25
0 to 0.1
Tin (Sn), % 0 to 0.6
0
Residuals, % 0
0 to 0.5