MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. N07716 Nickel

C62300 bronze belongs to the copper alloys classification, while N07716 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is N07716 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
78
Shear Strength, MPa 360 to 390
580
Tensile Strength: Ultimate (UTS), MPa 570 to 630
860
Tensile Strength: Yield (Proof), MPa 230 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
980
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 440
440
Thermal Conductivity, W/m-K 54
11
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
75
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.1
13
Embodied Energy, MJ/kg 52
190
Embodied Water, L/kg 390
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
240
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
300
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 19 to 21
28
Strength to Weight: Bending, points 18 to 20
24
Thermal Diffusivity, mm2/s 15
2.8
Thermal Shock Resistance, points 20 to 22
24

Alloy Composition

Aluminum (Al), % 8.5 to 10
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 83.2 to 89.5
0
Iron (Fe), % 2.0 to 4.0
0 to 11.3
Manganese (Mn), % 0 to 0.5
0 to 0.2
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 1.0
59 to 63
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.25
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.6
0
Titanium (Ti), % 0
1.0 to 1.6
Residuals, % 0 to 0.5
0