MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. R56401 Titanium

C62300 bronze belongs to the copper alloys classification, while R56401 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is R56401 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 18 to 32
9.1
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 360 to 390
560
Tensile Strength: Ultimate (UTS), MPa 570 to 630
940
Tensile Strength: Yield (Proof), MPa 230 to 310
850

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 220
340
Melting Completion (Liquidus), °C 1050
1610
Melting Onset (Solidus), °C 1040
1560
Specific Heat Capacity, J/kg-K 440
560
Thermal Conductivity, W/m-K 54
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 28
36
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.1
38
Embodied Energy, MJ/kg 52
610
Embodied Water, L/kg 390
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
83
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
3440
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 19 to 21
59
Strength to Weight: Bending, points 18 to 20
48
Thermal Diffusivity, mm2/s 15
2.9
Thermal Shock Resistance, points 20 to 22
67

Alloy Composition

Aluminum (Al), % 8.5 to 10
5.5 to 6.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 83.2 to 89.5
0
Hydrogen (H), % 0
0 to 0.012
Iron (Fe), % 2.0 to 4.0
0 to 0.25
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 1.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.13
Silicon (Si), % 0 to 0.25
0
Tin (Sn), % 0 to 0.6
0
Titanium (Ti), % 0
88.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0 to 0.5
0