MakeItFrom.com
Menu (ESC)

C62300 Bronze vs. S44535 Stainless Steel

C62300 bronze belongs to the copper alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62300 bronze and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18 to 32
28
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 43
78
Shear Strength, MPa 360 to 390
290
Tensile Strength: Ultimate (UTS), MPa 570 to 630
450
Tensile Strength: Yield (Proof), MPa 230 to 310
290

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
1000
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 54
21
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 28
11
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.4
Embodied Energy, MJ/kg 52
34
Embodied Water, L/kg 390
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 430
200
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
16
Strength to Weight: Bending, points 18 to 20
17
Thermal Diffusivity, mm2/s 15
5.6
Thermal Shock Resistance, points 20 to 22
15

Alloy Composition

Aluminum (Al), % 8.5 to 10
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 83.2 to 89.5
0 to 0.5
Iron (Fe), % 2.0 to 4.0
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 0.5
0.3 to 0.8
Nickel (Ni), % 0 to 1.0
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.25
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.6
0
Titanium (Ti), % 0
0.030 to 0.2
Residuals, % 0 to 0.5
0