MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. AWS ER90S-B9

C62400 bronze belongs to the copper alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 11 to 14
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 690 to 730
690
Tensile Strength: Yield (Proof), MPa 270 to 350
470

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 59
25
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 27
7.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 53
37
Embodied Water, L/kg 400
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
110
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
570
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 25
25
Strength to Weight: Bending, points 21 to 22
22
Thermal Diffusivity, mm2/s 16
6.9
Thermal Shock Resistance, points 25 to 26
19

Alloy Composition

Aluminum (Al), % 10 to 11.5
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 82.8 to 88
0 to 0.2
Iron (Fe), % 2.0 to 4.5
84.4 to 90.7
Manganese (Mn), % 0 to 0.3
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 0
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.25
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5