MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. EN 2.4650 Nickel

C62400 bronze belongs to the copper alloys classification, while EN 2.4650 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is EN 2.4650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 11 to 14
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
80
Shear Strength, MPa 420 to 440
730
Tensile Strength: Ultimate (UTS), MPa 690 to 730
1090
Tensile Strength: Yield (Proof), MPa 270 to 350
650

Thermal Properties

Latent Heat of Fusion, J/g 230
320
Maximum Temperature: Mechanical, °C 220
1010
Melting Completion (Liquidus), °C 1040
1400
Melting Onset (Solidus), °C 1030
1350
Specific Heat Capacity, J/kg-K 440
450
Thermal Conductivity, W/m-K 59
12
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 27
80
Density, g/cm3 8.2
8.5
Embodied Carbon, kg CO2/kg material 3.2
10
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 400
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
320
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
1030
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 23 to 25
36
Strength to Weight: Bending, points 21 to 22
28
Thermal Diffusivity, mm2/s 16
3.1
Thermal Shock Resistance, points 25 to 26
33

Alloy Composition

Aluminum (Al), % 10 to 11.5
0.3 to 0.6
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0.040 to 0.080
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
19 to 21
Copper (Cu), % 82.8 to 88
0 to 0.2
Iron (Fe), % 2.0 to 4.5
0 to 0.7
Manganese (Mn), % 0 to 0.3
0 to 0.6
Molybdenum (Mo), % 0
5.6 to 6.1
Nickel (Ni), % 0
46.9 to 54.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.4
Sulfur (S), % 0
0 to 0.0070
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
1.9 to 2.4
Residuals, % 0 to 0.5
0