MakeItFrom.com
Menu (ESC)

C62400 Bronze vs. S46800 Stainless Steel

C62400 bronze belongs to the copper alloys classification, while S46800 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C62400 bronze and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 11 to 14
25
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 420 to 440
300
Tensile Strength: Ultimate (UTS), MPa 690 to 730
470
Tensile Strength: Yield (Proof), MPa 270 to 350
230

Thermal Properties

Latent Heat of Fusion, J/g 230
290
Maximum Temperature: Mechanical, °C 220
920
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 59
23
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
12
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 53
37
Embodied Water, L/kg 400
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 68 to 77
98
Resilience: Unit (Modulus of Resilience), kJ/m3 320 to 550
130
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 23 to 25
17
Strength to Weight: Bending, points 21 to 22
18
Thermal Diffusivity, mm2/s 16
6.1
Thermal Shock Resistance, points 25 to 26
16

Alloy Composition

Aluminum (Al), % 10 to 11.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 82.8 to 88
0
Iron (Fe), % 2.0 to 4.5
76.5 to 81.8
Manganese (Mn), % 0 to 0.3
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.070 to 0.3
Residuals, % 0 to 0.5
0