MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. AISI 301LN Stainless Steel

C62500 bronze belongs to the copper alloys classification, while AISI 301LN stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is AISI 301LN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.0
23 to 51
Fatigue Strength, MPa 460
270 to 520
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 410
450 to 670
Tensile Strength: Ultimate (UTS), MPa 690
630 to 1060
Tensile Strength: Yield (Proof), MPa 410
270 to 770

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
890
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1050
1380
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 47
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.7
Embodied Energy, MJ/kg 55
39
Embodied Water, L/kg 410
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
220 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 750
180 to 1520
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
22 to 38
Strength to Weight: Bending, points 22
21 to 30
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 24
14 to 24

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 78.5 to 84
0
Iron (Fe), % 3.5 to 5.5
70.7 to 77.9
Manganese (Mn), % 0 to 2.0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0.070 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0