MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. ASTM A387 Grade 2 Steel

C62500 bronze belongs to the copper alloys classification, while ASTM A387 grade 2 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is ASTM A387 grade 2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.0
25
Fatigue Strength, MPa 460
190 to 250
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 410
300 to 350
Tensile Strength: Ultimate (UTS), MPa 690
470 to 550
Tensile Strength: Yield (Proof), MPa 410
260 to 350

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
420
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 47
45
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.6
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 3.3
1.6
Embodied Energy, MJ/kg 55
20
Embodied Water, L/kg 410
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 750
180 to 320
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
16 to 20
Strength to Weight: Bending, points 22
17 to 19
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 24
14 to 16

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0.050 to 0.21
Chromium (Cr), % 0
0.5 to 0.8
Copper (Cu), % 78.5 to 84
0
Iron (Fe), % 3.5 to 5.5
97.1 to 98.3
Manganese (Mn), % 0 to 2.0
0.55 to 0.8
Molybdenum (Mo), % 0
0.45 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0.15 to 0.4
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0