MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. EN 1.5535 Steel

C62500 bronze belongs to the copper alloys classification, while EN 1.5535 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is EN 1.5535 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.0
11 to 22
Fatigue Strength, MPa 460
210 to 320
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 410
320 to 370
Tensile Strength: Ultimate (UTS), MPa 690
450 to 1490
Tensile Strength: Yield (Proof), MPa 410
300 to 500

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 47
50
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.9
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.4
Embodied Energy, MJ/kg 55
19
Embodied Water, L/kg 410
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
45 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 750
240 to 680
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
16 to 53
Strength to Weight: Bending, points 22
17 to 37
Thermal Diffusivity, mm2/s 13
13
Thermal Shock Resistance, points 24
13 to 44

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 78.5 to 84
0 to 0.25
Iron (Fe), % 3.5 to 5.5
97.6 to 98.9
Manganese (Mn), % 0 to 2.0
0.9 to 1.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0