MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. EN 1.6554 Steel

C62500 bronze belongs to the copper alloys classification, while EN 1.6554 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is EN 1.6554 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.0
17 to 21
Fatigue Strength, MPa 460
380 to 520
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 690
780 to 930
Tensile Strength: Yield (Proof), MPa 410
550 to 790

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
420
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 47
40
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.4
Density, g/cm3 8.1
7.9
Embodied Carbon, kg CO2/kg material 3.3
1.7
Embodied Energy, MJ/kg 55
22
Embodied Water, L/kg 410
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 750
810 to 1650
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
27 to 33
Strength to Weight: Bending, points 22
24 to 27
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 24
23 to 27

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 78.5 to 84
0 to 0.3
Iron (Fe), % 3.5 to 5.5
94.6 to 97.3
Manganese (Mn), % 0 to 2.0
0.6 to 0.9
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0 to 0.5
0