MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. EN 1.7233 Steel

C62500 bronze belongs to the copper alloys classification, while EN 1.7233 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is EN 1.7233 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.0
18 to 23
Fatigue Strength, MPa 460
270 to 530
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 410
450 to 590
Tensile Strength: Ultimate (UTS), MPa 690
700 to 960
Tensile Strength: Yield (Proof), MPa 410
380 to 780

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
430
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1050
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 47
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.0
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 3.3
1.6
Embodied Energy, MJ/kg 55
21
Embodied Water, L/kg 410
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
110 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 750
380 to 1630
Stiffness to Weight: Axial, points 7.8
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
25 to 34
Strength to Weight: Bending, points 22
22 to 28
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 24
21 to 28

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0.39 to 0.45
Chromium (Cr), % 0
1.2 to 1.5
Copper (Cu), % 78.5 to 84
0
Iron (Fe), % 3.5 to 5.5
96.2 to 97.5
Manganese (Mn), % 0 to 2.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.5 to 0.7
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Residuals, % 0 to 0.5
0