MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. S20431 Stainless Steel

C62500 bronze belongs to the copper alloys classification, while S20431 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.0
46
Fatigue Strength, MPa 460
320
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 29
86
Shear Modulus, GPa 42
76
Shear Strength, MPa 410
500
Tensile Strength: Ultimate (UTS), MPa 690
710
Tensile Strength: Yield (Proof), MPa 410
350

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
890
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 1050
1360
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 47
15
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 8.1
7.7
Embodied Carbon, kg CO2/kg material 3.3
2.5
Embodied Energy, MJ/kg 55
36
Embodied Water, L/kg 410
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
270
Resilience: Unit (Modulus of Resilience), kJ/m3 750
310
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 24
15

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 78.5 to 84
1.5 to 3.5
Iron (Fe), % 3.5 to 5.5
66.1 to 74.4
Manganese (Mn), % 0 to 2.0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0