MakeItFrom.com
Menu (ESC)

C62500 Bronze vs. S35045 Stainless Steel

C62500 bronze belongs to the copper alloys classification, while S35045 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C62500 bronze and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 1.0
39
Fatigue Strength, MPa 460
170
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
78
Shear Strength, MPa 410
370
Tensile Strength: Ultimate (UTS), MPa 690
540
Tensile Strength: Yield (Proof), MPa 410
190

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1050
1390
Melting Onset (Solidus), °C 1050
1340
Specific Heat Capacity, J/kg-K 460
480
Thermal Conductivity, W/m-K 47
12
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 11
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
34
Density, g/cm3 8.1
8.0
Embodied Carbon, kg CO2/kg material 3.3
5.8
Embodied Energy, MJ/kg 55
83
Embodied Water, L/kg 410
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.0
170
Resilience: Unit (Modulus of Resilience), kJ/m3 750
94
Stiffness to Weight: Axial, points 7.8
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
19
Strength to Weight: Bending, points 22
19
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 24
12

Alloy Composition

Aluminum (Al), % 12.5 to 13.5
0.15 to 0.6
Carbon (C), % 0
0.060 to 0.1
Chromium (Cr), % 0
25 to 29
Copper (Cu), % 78.5 to 84
0 to 0.75
Iron (Fe), % 3.5 to 5.5
29.4 to 42.6
Manganese (Mn), % 0 to 2.0
0 to 1.5
Nickel (Ni), % 0
32 to 37
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6
Residuals, % 0 to 0.5
0