MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. EN 1.4361 Stainless Steel

C63000 bronze belongs to the copper alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 7.9 to 15
43
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 400 to 470
440
Tensile Strength: Ultimate (UTS), MPa 660 to 790
630
Tensile Strength: Yield (Proof), MPa 330 to 390
250

Thermal Properties

Latent Heat of Fusion, J/g 230
350
Maximum Temperature: Mechanical, °C 230
940
Melting Completion (Liquidus), °C 1050
1370
Melting Onset (Solidus), °C 1040
1330
Specific Heat Capacity, J/kg-K 440
490
Thermal Conductivity, W/m-K 39
14
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
19
Density, g/cm3 8.2
7.6
Embodied Carbon, kg CO2/kg material 3.5
3.6
Embodied Energy, MJ/kg 57
52
Embodied Water, L/kg 390
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
220
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
160
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22 to 26
23
Strength to Weight: Bending, points 20 to 23
21
Thermal Diffusivity, mm2/s 11
3.7
Thermal Shock Resistance, points 23 to 27
15

Alloy Composition

Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 76.8 to 85
0
Iron (Fe), % 2.0 to 4.0
58.7 to 65.8
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 4.0 to 5.5
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.25
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0