MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. S31254 Stainless Steel

C63000 bronze belongs to the copper alloys classification, while S31254 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is S31254 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 7.9 to 15
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 400 to 470
490
Tensile Strength: Ultimate (UTS), MPa 660 to 790
720
Tensile Strength: Yield (Proof), MPa 330 to 390
330

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1090
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
460
Thermal Conductivity, W/m-K 39
14
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
28
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 3.5
5.5
Embodied Energy, MJ/kg 57
74
Embodied Water, L/kg 390
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
240
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
270
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 22 to 26
25
Strength to Weight: Bending, points 20 to 23
22
Thermal Diffusivity, mm2/s 11
3.8
Thermal Shock Resistance, points 23 to 27
15

Alloy Composition

Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
19.5 to 20.5
Copper (Cu), % 76.8 to 85
0.5 to 1.0
Iron (Fe), % 2.0 to 4.0
51.4 to 56.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
6.0 to 6.5
Nickel (Ni), % 4.0 to 5.5
17.5 to 18.5
Nitrogen (N), % 0
0.18 to 0.22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0