MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. S32950 Stainless Steel

C63000 bronze belongs to the copper alloys classification, while S32950 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is S32950 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 7.9 to 15
17
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 44
80
Shear Strength, MPa 400 to 470
480
Tensile Strength: Ultimate (UTS), MPa 660 to 790
780
Tensile Strength: Yield (Proof), MPa 330 to 390
550

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1050
1430
Melting Onset (Solidus), °C 1040
1390
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
17
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 3.5
3.4
Embodied Energy, MJ/kg 57
47
Embodied Water, L/kg 390
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
120
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
730
Stiffness to Weight: Axial, points 7.9
15
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22 to 26
28
Strength to Weight: Bending, points 20 to 23
24
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 23 to 27
21

Alloy Composition

Aluminum (Al), % 9.0 to 11
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Copper (Cu), % 76.8 to 85
0
Iron (Fe), % 2.0 to 4.0
60.3 to 69.4
Manganese (Mn), % 0 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 2.5
Nickel (Ni), % 4.0 to 5.5
3.5 to 5.2
Nitrogen (N), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.25
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0