MakeItFrom.com
Menu (ESC)

C63000 Bronze vs. S36200 Stainless Steel

C63000 bronze belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63000 bronze and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 7.9 to 15
3.4 to 4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 400 to 470
680 to 810
Tensile Strength: Ultimate (UTS), MPa 660 to 790
1180 to 1410
Tensile Strength: Yield (Proof), MPa 330 to 390
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 230
820
Melting Completion (Liquidus), °C 1050
1440
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 39
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.5
2.8
Embodied Energy, MJ/kg 57
40
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 82
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 470 to 640
2380 to 3930
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 22 to 26
42 to 50
Strength to Weight: Bending, points 20 to 23
32 to 36
Thermal Diffusivity, mm2/s 11
4.3
Thermal Shock Resistance, points 23 to 27
40 to 48

Alloy Composition

Aluminum (Al), % 9.0 to 11
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 76.8 to 85
0
Iron (Fe), % 2.0 to 4.0
75.4 to 79.5
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 4.0 to 5.5
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.25
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0.6 to 0.9
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0