MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. EN 1.4923 Stainless Steel

C63020 bronze belongs to the copper alloys classification, while EN 1.4923 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is EN 1.4923 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 6.8
12 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 600
540 to 590
Tensile Strength: Ultimate (UTS), MPa 1020
870 to 980
Tensile Strength: Yield (Proof), MPa 740
470 to 780

Thermal Properties

Latent Heat of Fusion, J/g 230
270
Maximum Temperature: Mechanical, °C 230
740
Melting Completion (Liquidus), °C 1070
1450
Melting Onset (Solidus), °C 1020
1410
Specific Heat Capacity, J/kg-K 450
480
Thermal Conductivity, W/m-K 40
24
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
8.0
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 3.6
2.9
Embodied Energy, MJ/kg 58
41
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
570 to 1580
Stiffness to Weight: Axial, points 8.0
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 34
31 to 35
Strength to Weight: Bending, points 27
26 to 28
Thermal Diffusivity, mm2/s 11
6.5
Thermal Shock Resistance, points 35
30 to 34

Alloy Composition

Aluminum (Al), % 10 to 11
0
Carbon (C), % 0
0.18 to 0.24
Chromium (Cr), % 0 to 0.050
11 to 12.5
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
0
Iron (Fe), % 4.0 to 5.5
83.5 to 87.1
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0.4 to 0.9
Molybdenum (Mo), % 0
0.8 to 1.2
Nickel (Ni), % 4.2 to 6.0
0.3 to 0.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.25
0
Vanadium (V), % 0
0.25 to 0.35
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0