MakeItFrom.com
Menu (ESC)

C63020 Bronze vs. CC140C Copper

Both C63020 bronze and CC140C copper are copper alloys. They have 78% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63020 bronze and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 6.8
11
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 44
44
Tensile Strength: Ultimate (UTS), MPa 1020
340
Tensile Strength: Yield (Proof), MPa 740
230

Thermal Properties

Latent Heat of Fusion, J/g 230
210
Maximum Temperature: Mechanical, °C 230
200
Melting Completion (Liquidus), °C 1070
1100
Melting Onset (Solidus), °C 1020
1040
Specific Heat Capacity, J/kg-K 450
390
Thermal Conductivity, W/m-K 40
310
Thermal Expansion, µm/m-K 18
17

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 3.6
2.6
Embodied Energy, MJ/kg 58
41
Embodied Water, L/kg 390
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63
34
Resilience: Unit (Modulus of Resilience), kJ/m3 2320
220
Stiffness to Weight: Axial, points 8.0
7.3
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 34
10
Strength to Weight: Bending, points 27
12
Thermal Diffusivity, mm2/s 11
89
Thermal Shock Resistance, points 35
12

Alloy Composition

Aluminum (Al), % 10 to 11
0
Chromium (Cr), % 0 to 0.050
0.4 to 1.2
Cobalt (Co), % 0 to 0.2
0
Copper (Cu), % 74.7 to 81.8
98.8 to 99.6
Iron (Fe), % 4.0 to 5.5
0
Lead (Pb), % 0 to 0.030
0
Manganese (Mn), % 0 to 1.5
0
Nickel (Ni), % 4.2 to 6.0
0
Tin (Sn), % 0 to 0.25
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0