MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. AWS BNi-4

C63200 bronze belongs to the copper alloys classification, while AWS BNi-4 belongs to the nickel alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is AWS BNi-4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
180
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 44
67
Tensile Strength: Ultimate (UTS), MPa 640 to 710
430

Thermal Properties

Latent Heat of Fusion, J/g 230
340
Melting Completion (Liquidus), °C 1060
1070
Melting Onset (Solidus), °C 1040
980
Specific Heat Capacity, J/kg-K 440
470
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.4
10
Embodied Energy, MJ/kg 55
140
Embodied Water, L/kg 380
220

Common Calculations

Stiffness to Weight: Axial, points 7.9
12
Stiffness to Weight: Bending, points 20
22
Strength to Weight: Axial, points 21 to 24
14
Strength to Weight: Bending, points 20 to 21
15
Thermal Shock Resistance, points 22 to 24
16

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
0 to 0.050
Boron (B), % 0
1.5 to 2.2
Carbon (C), % 0
0 to 0.060
Cobalt (Co), % 0
0 to 0.1
Copper (Cu), % 78.8 to 82.6
0
Iron (Fe), % 3.5 to 4.3
0 to 1.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 4.0 to 4.8
91.4 to 95.5
Phosphorus (P), % 0
0 to 0.020
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 0 to 0.1
3.0 to 4.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0 to 0.050
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0
0 to 0.5