MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. EN 1.5508 Steel

C63200 bronze belongs to the copper alloys classification, while EN 1.5508 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is EN 1.5508 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 17 to 18
11 to 20
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
73
Shear Strength, MPa 390 to 440
300 to 360
Tensile Strength: Ultimate (UTS), MPa 640 to 710
420 to 1460
Tensile Strength: Yield (Proof), MPa 310 to 350
310 to 490

Thermal Properties

Latent Heat of Fusion, J/g 230
250
Maximum Temperature: Mechanical, °C 230
400
Melting Completion (Liquidus), °C 1060
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 35
51
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.9
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.4
1.4
Embodied Energy, MJ/kg 55
19
Embodied Water, L/kg 380
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
44 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
260 to 640
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 21 to 24
15 to 52
Strength to Weight: Bending, points 20 to 21
16 to 36
Thermal Diffusivity, mm2/s 9.6
14
Thermal Shock Resistance, points 22 to 24
12 to 43

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.2 to 0.25
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 78.8 to 82.6
0 to 0.25
Iron (Fe), % 3.5 to 4.3
97.9 to 99.199
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
0.6 to 0.9
Nickel (Ni), % 4.0 to 4.8
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Residuals, % 0 to 0.5
0