C63200 Bronze vs. CC483K Bronze
Both C63200 bronze and CC483K bronze are copper alloys. They have 82% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is C63200 bronze and the bottom bar is CC483K bronze.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 120 | |
110 |
Elongation at Break, % | 17 to 18 | |
6.4 |
Poisson's Ratio | 0.34 | |
0.34 |
Shear Modulus, GPa | 44 | |
40 |
Tensile Strength: Ultimate (UTS), MPa | 640 to 710 | |
310 |
Tensile Strength: Yield (Proof), MPa | 310 to 350 | |
170 |
Thermal Properties
Latent Heat of Fusion, J/g | 230 | |
190 |
Maximum Temperature: Mechanical, °C | 230 | |
170 |
Melting Completion (Liquidus), °C | 1060 | |
990 |
Melting Onset (Solidus), °C | 1040 | |
870 |
Specific Heat Capacity, J/kg-K | 440 | |
370 |
Thermal Conductivity, W/m-K | 35 | |
68 |
Thermal Expansion, µm/m-K | 18 | |
18 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 7.0 | |
10 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 7.6 | |
10 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 29 | |
36 |
Density, g/cm3 | 8.3 | |
8.7 |
Embodied Carbon, kg CO2/kg material | 3.4 | |
3.8 |
Embodied Energy, MJ/kg | 55 | |
62 |
Embodied Water, L/kg | 380 | |
400 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 95 to 99 | |
17 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 400 to 510 | |
130 |
Stiffness to Weight: Axial, points | 7.9 | |
6.9 |
Stiffness to Weight: Bending, points | 20 | |
18 |
Strength to Weight: Axial, points | 21 to 24 | |
9.9 |
Strength to Weight: Bending, points | 20 to 21 | |
12 |
Thermal Diffusivity, mm2/s | 9.6 | |
21 |
Thermal Shock Resistance, points | 22 to 24 | |
11 |
Alloy Composition
Aluminum (Al), % | 8.7 to 9.5 | |
0 to 0.010 |
Antimony (Sb), % | 0 | |
0 to 0.15 |
Copper (Cu), % | 78.8 to 82.6 | |
85 to 89 |
Iron (Fe), % | 3.5 to 4.3 | |
0 to 0.2 |
Lead (Pb), % | 0 to 0.020 | |
0 to 0.7 |
Manganese (Mn), % | 1.2 to 2.0 | |
0 to 0.2 |
Nickel (Ni), % | 4.0 to 4.8 | |
0 to 2.0 |
Phosphorus (P), % | 0 | |
0 to 0.6 |
Silicon (Si), % | 0 to 0.1 | |
0 to 0.010 |
Sulfur (S), % | 0 | |
0 to 0.050 |
Tin (Sn), % | 0 | |
10.5 to 13 |
Zinc (Zn), % | 0 | |
0 to 0.5 |
Residuals, % | 0 to 0.5 | |
0 |