MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. Grade 24 Titanium

C63200 bronze belongs to the copper alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 17 to 18
11
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 44
40
Shear Strength, MPa 390 to 440
610
Tensile Strength: Ultimate (UTS), MPa 640 to 710
1010
Tensile Strength: Yield (Proof), MPa 310 to 350
940

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 230
340
Melting Completion (Liquidus), °C 1060
1610
Melting Onset (Solidus), °C 1040
1560
Specific Heat Capacity, J/kg-K 440
560
Thermal Conductivity, W/m-K 35
7.1
Thermal Expansion, µm/m-K 18
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
2.0

Otherwise Unclassified Properties

Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 3.4
43
Embodied Energy, MJ/kg 55
710
Embodied Water, L/kg 380
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
110
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
4160
Stiffness to Weight: Axial, points 7.9
13
Stiffness to Weight: Bending, points 20
35
Strength to Weight: Axial, points 21 to 24
63
Strength to Weight: Bending, points 20 to 21
50
Thermal Diffusivity, mm2/s 9.6
2.9
Thermal Shock Resistance, points 22 to 24
72

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 78.8 to 82.6
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 3.5 to 4.3
0 to 0.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 4.0 to 4.8
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.1
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4