MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. C84500 Brass

Both C63200 bronze and C84500 brass are copper alloys. They have 79% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is C84500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 17 to 18
28
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 44
39
Tensile Strength: Ultimate (UTS), MPa 640 to 710
240
Tensile Strength: Yield (Proof), MPa 310 to 350
97

Thermal Properties

Latent Heat of Fusion, J/g 230
180
Maximum Temperature: Mechanical, °C 230
150
Melting Completion (Liquidus), °C 1060
980
Melting Onset (Solidus), °C 1040
840
Specific Heat Capacity, J/kg-K 440
360
Thermal Conductivity, W/m-K 35
72
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 29
28
Density, g/cm3 8.3
8.7
Embodied Carbon, kg CO2/kg material 3.4
2.9
Embodied Energy, MJ/kg 55
47
Embodied Water, L/kg 380
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
54
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
45
Stiffness to Weight: Axial, points 7.9
6.6
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 21 to 24
7.7
Strength to Weight: Bending, points 20 to 21
9.8
Thermal Diffusivity, mm2/s 9.6
23
Thermal Shock Resistance, points 22 to 24
8.6

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 78.8 to 82.6
77 to 79
Iron (Fe), % 3.5 to 4.3
0 to 0.4
Lead (Pb), % 0 to 0.020
6.0 to 7.5
Manganese (Mn), % 1.2 to 2.0
0
Nickel (Ni), % 4.0 to 4.8
0 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
2.0 to 4.0
Zinc (Zn), % 0
10 to 14
Residuals, % 0
0 to 0.7