MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. N08535 Stainless Steel

C63200 bronze belongs to the copper alloys classification, while N08535 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is N08535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 17 to 18
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
80
Shear Strength, MPa 390 to 440
400
Tensile Strength: Ultimate (UTS), MPa 640 to 710
570
Tensile Strength: Yield (Proof), MPa 310 to 350
240

Thermal Properties

Latent Heat of Fusion, J/g 230
310
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1060
1420
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 440
470
Thermal Conductivity, W/m-K 35
13
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
36
Density, g/cm3 8.3
8.1
Embodied Carbon, kg CO2/kg material 3.4
6.3
Embodied Energy, MJ/kg 55
87
Embodied Water, L/kg 380
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
210
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
140
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 21 to 24
20
Strength to Weight: Bending, points 20 to 21
19
Thermal Diffusivity, mm2/s 9.6
3.3
Thermal Shock Resistance, points 22 to 24
13

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 78.8 to 82.6
0 to 1.5
Iron (Fe), % 3.5 to 4.3
29.4 to 44.5
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 4.0 to 4.8
29 to 36.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0