MakeItFrom.com
Menu (ESC)

C63200 Bronze vs. R30155 Cobalt

C63200 bronze belongs to the copper alloys classification, while R30155 cobalt belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C63200 bronze and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
210
Elongation at Break, % 17 to 18
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 44
81
Shear Strength, MPa 390 to 440
570
Tensile Strength: Ultimate (UTS), MPa 640 to 710
850
Tensile Strength: Yield (Proof), MPa 310 to 350
390

Thermal Properties

Latent Heat of Fusion, J/g 230
300
Maximum Temperature: Mechanical, °C 230
1100
Melting Completion (Liquidus), °C 1060
1470
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 440
450
Thermal Conductivity, W/m-K 35
12
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 29
80
Density, g/cm3 8.3
8.5
Embodied Carbon, kg CO2/kg material 3.4
9.7
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 380
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95 to 99
230
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 510
370
Stiffness to Weight: Axial, points 7.9
14
Stiffness to Weight: Bending, points 20
23
Strength to Weight: Axial, points 21 to 24
28
Strength to Weight: Bending, points 20 to 21
24
Thermal Diffusivity, mm2/s 9.6
3.2
Thermal Shock Resistance, points 22 to 24
21

Alloy Composition

Aluminum (Al), % 8.7 to 9.5
0
Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 78.8 to 82.6
0
Iron (Fe), % 3.5 to 4.3
24.3 to 36.2
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 1.2 to 2.0
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 4.0 to 4.8
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tungsten (W), % 0
2.0 to 3.0
Residuals, % 0 to 0.5
0