MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. 1200 Aluminum

C63600 bronze belongs to the copper alloys classification, while 1200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C63600 bronze and the bottom bar is 1200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 30 to 66
1.1 to 28
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
26
Shear Strength, MPa 320 to 360
54 to 100
Tensile Strength: Ultimate (UTS), MPa 410 to 540
85 to 180
Tensile Strength: Yield (Proof), MPa 150 to 260
28 to 160

Thermal Properties

Latent Heat of Fusion, J/g 230
400
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 1030
660
Melting Onset (Solidus), °C 980
650
Specific Heat Capacity, J/kg-K 410
900
Thermal Conductivity, W/m-K 57
230
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
58
Electrical Conductivity: Equal Weight (Specific), % IACS 13
190

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.0
Density, g/cm3 8.6
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.2
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 340
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
2.0 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
5.7 to 180
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 13 to 18
8.7 to 19
Strength to Weight: Bending, points 14 to 17
16 to 26
Thermal Diffusivity, mm2/s 16
92
Thermal Shock Resistance, points 15 to 20
3.8 to 8.1

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
99 to 100
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 93 to 96.3
0 to 0.050
Iron (Fe), % 0 to 0.15
0 to 1.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.15
0
Silicon (Si), % 0.7 to 1.3
0 to 1.0
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0
0 to 0.15