MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. EN AC-51200 Aluminum

C63600 bronze belongs to the copper alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C63600 bronze and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
67
Elongation at Break, % 30 to 66
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
25
Tensile Strength: Ultimate (UTS), MPa 410 to 540
220
Tensile Strength: Yield (Proof), MPa 150 to 260
150

Thermal Properties

Latent Heat of Fusion, J/g 230
410
Maximum Temperature: Mechanical, °C 210
170
Melting Completion (Liquidus), °C 1030
640
Melting Onset (Solidus), °C 980
570
Specific Heat Capacity, J/kg-K 410
910
Thermal Conductivity, W/m-K 57
92
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
22
Electrical Conductivity: Equal Weight (Specific), % IACS 13
74

Otherwise Unclassified Properties

Base Metal Price, % relative 30
9.5
Density, g/cm3 8.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
9.6
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 340
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
2.2
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
160
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 13 to 18
24
Strength to Weight: Bending, points 14 to 17
31
Thermal Diffusivity, mm2/s 16
39
Thermal Shock Resistance, points 15 to 20
10

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
84.5 to 92
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 93 to 96.3
0 to 0.1
Iron (Fe), % 0 to 0.15
0 to 1.0
Lead (Pb), % 0 to 0.050
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 0
0 to 0.55
Nickel (Ni), % 0 to 0.15
0 to 0.1
Silicon (Si), % 0.7 to 1.3
0 to 2.5
Tin (Sn), % 0 to 0.2
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0
0 to 0.15