MakeItFrom.com
Menu (ESC)

C63600 Bronze vs. C94700 Bronze

Both C63600 bronze and C94700 bronze are copper alloys. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C63600 bronze and the bottom bar is C94700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 30 to 66
7.9 to 32
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 410 to 540
350 to 590
Tensile Strength: Yield (Proof), MPa 150 to 260
160 to 400

Thermal Properties

Latent Heat of Fusion, J/g 230
200
Maximum Temperature: Mechanical, °C 210
190
Melting Completion (Liquidus), °C 1030
1030
Melting Onset (Solidus), °C 980
900
Specific Heat Capacity, J/kg-K 410
380
Thermal Conductivity, W/m-K 57
54
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
12
Electrical Conductivity: Equal Weight (Specific), % IACS 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.5
Embodied Energy, MJ/kg 45
56
Embodied Water, L/kg 340
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98 to 290
41 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 300
110 to 700
Stiffness to Weight: Axial, points 7.3
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 13 to 18
11 to 19
Strength to Weight: Bending, points 14 to 17
13 to 18
Thermal Diffusivity, mm2/s 16
16
Thermal Shock Resistance, points 15 to 20
12 to 21

Alloy Composition

Aluminum (Al), % 3.0 to 4.0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Arsenic (As), % 0 to 0.15
0
Copper (Cu), % 93 to 96.3
85 to 90
Iron (Fe), % 0 to 0.15
0 to 0.25
Lead (Pb), % 0 to 0.050
0 to 0.1
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.15
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0.7 to 1.3
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.2
4.5 to 6.0
Zinc (Zn), % 0 to 0.5
1.0 to 2.5
Residuals, % 0
0 to 1.3